Algebraic types

- Algebraic types are *tagged unions of products*
- Example

```
data Shape = Line Pnt Pnt | Triangle Pnt Pnt Pnt | Quad Pnt Pnt Pnt Pnt
```

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k-ary constructor is applied to k type expressions
Examples of Algebraic types

```haskell
data Bool = False | True

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Node (Tree a) (Tree a)

data Tree' a b = Leaf' a
| Nonleaf' b (Tree' a b) (Tree' a b)

data Course = Course String Int String (List Course)
    name   number  description   pre-reqs
```

Constructors are functions

- Constructors can be used as functions to create values of the type

```haskell
let
    l1 :: Shape
    l1 = Line e1 e2

    t1 :: Shape = Triangle e3 e4 e5
    q1 :: Shape = Quad e6 e7 e8 e9
in
...
```

where each "eJ" is an expression of type "Pnt"
Pattern-matching on algebraic types

- **Pattern-matching** is used to examine values of an algebraic type

```
anchorPnt :: Shape -> Pnt
anchorPnt s = case s of
  Line     p1 p2       -> p1
  Triangle p3 p4 p5    -> p3
  Quad     p6 p7 p8 p9 -> p6
```

- A pattern-match has two roles:
 - A test: "does the given value match this pattern?"
 - Binding ("if the given value matches the pattern, bind the variables in the pattern to the corresponding parts of the value")

- Clauses are examined top-to-bottom and left-to-right for pattern matching

Pattern-matching *Type safety*

- Given a "Line" object, it is impossible to read "the field corresponding to the third point in a Triangle object" because:
 - all unions are *tagged* unions
 - fields of an algebraic type can only be examined *via* pattern-matching
Pattern-matching \textit{scope & don’t cares}

- Each clause starts a new \textit{scope}: can re-use bound variables
- Can use "don't cares" for bound variables

```haskell
anchorPnt :: Shape -> Pnt
anchorPnt s = case s of
  Line p1 _ _ -> p1
  Triangle p1 _ _ -> p1
  Quad p1 _ _ _ -> p1
```

Pattern-matching \textit{more syntax}

- Functions can be defined directly using pattern-matching

```haskell
anchorPnt :: Shape -> Pnt
anchorPnt (Line p1 _) = p1
anchorPnt (Triangle p1 _) = p1
anchorPnt (Quad p1 _) = p1
```

- Pattern-matching can be used in list comprehensions \textit{(later)}

```haskell
(Line p1 p2) <- shapes
```
Type Constructors: special syntax

- **Function type constructor**
 \[\text{Int} \rightarrow \text{Bool} \]
 Conceptually:
 \[\text{Function} \ \text{Int} \ \text{Bool} \]
 i.e., the arrow is an "infix" type constructor

- **Tuple type constructor**
 \[(\text{Int}, \text{Bool}) \]
 Conceptually:
 \[\text{Tuple2} \ \text{Int} \ \text{Bool} \]
 Similarly for Tuple3, ...

Type Synonyms

- **data** Point = Point Int Int
 a new data type

 versus

- **type** Point = (Int,Int)
 a type synonym

Type Synonyms do not create new types. It is just a convenience to improve readability.

- move :: Point -> (Int,Int) -> Point
 move (Point x y) (sx, sy) =
 Point (x + sx) (y + sy)

 versus

 move (x,y) (sx,sy) = (x + sx, y + sy)
Abstract Types

A rational number is a pair of integers but suppose we want to express it in the reduced form only. Such a restriction cannot be enforced using an algebraic type.

```haskell
module Rationalpackage
  (Rational,rational,rationalParts) where

data Rational = RatCons Int Int

rational :: Int -> Int -> Rational
rational x y = let d = gcd x y
               in RatCons (x/d) (y/d)

rationalParts :: Rational -> (Int,Int)
rationalParts (RatCons x y)= (x,y)
```

No pattern matching on abstract data types

List: A Recursive Data Type

```haskell
data List t = Nil | Cons t (List t)
```

A list data type can be constructed in two different ways:

- an empty list
- a non-empty list

- All elements of a list have the same type
- The list type is recursive and polymorphic
Infix notation

\[
\text{Cons } x \ 	ext{xs } \equiv \ x:\text{xs}
\]

\[
2:3:6:\text{Nil } \equiv \ (2:3:(6:\text{Nil})) = [2,3,6]
\]

This list may be visualized as follows:

```
2 3 6
```

Example: Split a list

```haskell
data Token = Word String | Number Int

Split a list of tokens into two lists - a list words and a list of numbers

\[
\text{split} :: (\text{List Token}) \rightarrow (\text{List String}, \text{List Int})
\]

\[
\text{split} \ [\] = ([], [])
\]

\[
\text{split} \ (t:ts) = ?
\]

let
\[
(ws,ns) = \text{split} \ ts
\]

in
\[
\text{case } t \text{ of}
\]
Overloading and Type Classes

Overloading *ad hoc polymorphism*

A symbol can represent multiple values each with a different type. For example, + represents:

```plaintext
plusInt :: Int -> Int -> Int
plusFloat :: Float -> Float -> Float
```

The context determines which value is denoted.

The overloading of an identifier is *resolved* when the unique value associated with the symbol in that context can be determined.

Compiler tries to resolve overloading but sometimes can’t. The user must *declare the type* explicitly in such cases.
Overloading vs. Polymorphism

Both allow a single identifier to be used for multiple types.

However, the two concepts are very different:

1. A polymorphic function represents a single function that works for many types.
   Overloading uses the same name for several different functions.

2. All specific types of a polymorphic identifier are instances of a most general type.

The Most General Type

The most general type of “\( \text{twice } f = \lambda x \to f (f x) \)” is

\[ \forall t. (t \to t) \to (t \to t) \]

Any type can be substituted for \( t \) to get an instance of \( \text{twice} \):

- \((\text{Int} \to \text{Int}) \to (\text{Int} \to \text{Int})\)
- \((\text{String} \to \text{String}) \to (\text{String} \to \text{String})\)

Overloaded + does not have a most general type:

- \(\text{plusInt} :: \text{Int} \to \text{Int} \to \text{Int}\)
- \(\text{plusFloat} :: \text{Float} \to \text{Float} \to \text{Float}\)

Can + be assigned the type \( \forall t. t \to t \to t \)?
Handling Overloading

- Not a problem in explicitly typed languages: the compiler has enough context information to resolve the overloading.
- Not a problem in OO languages (e.g., Java) where objects carry their type at runtime, and dynamic dispatch is possible.
- Trickier to integrate in languages that use type inference
  - ML: ad-hoc support for limited cases (==)
  - Haskell: real solution – type classes
    - Allows overloading of user-defined symbols

Type Classes

Type classes group together related functions (e.g., +, -) that are overloaded over the same types (e.g., Int, Float):

```haskell
class Num a where
 (==), (/=) :: a -> a -> Bool
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 ...

instance Num Int where
 x == y = integer_eq x y
 x + y = integer_add x y
 ...

instance Num Float where ...
```
Overloaded Constants

(Num t) is read as a predicate
“t is an instance of class Num”
sqr :: (Num a) => a -> a
sqr x = x * x

What about constants?
plus1 x = x + 1
If 1 is treated as an integer then plus1 cannot be overloaded.

In Haskell numeric literals are overloaded and considered a short hand for
(fromInteger the_integer_1_value)
where
fromInteger :: (Num a) => Integer -> a

The Equality Operator

• Equality is an overloaded function, not a polymorphic one

class Eq a where

    (==), (/=) :: a -> a -> Bool
    a /= b = not (a == b)

• Equality needs to be defined for each type of interest.
• Default definition for /=
• Smart compilers can derive the code for structural equality
Type Class Hierarchy

```
class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a
```

- Eq is a superclass of Ord:
  - If type `a` is an instance of Ord, `a` is also an instance of Eq
- Ord inherits the specification of `(==)`, `(/=)` from Eq

Read and Show Functions

The raw input from a keyboard or output to the screen or file is usually a string. However, different programs interpret the string differently depending upon their type signature.

A program to calculate monthly mortgage payments may assign the following signatures:

```
read :: String -> Int -- principal, duration
read :: String -> Float -- rate
show :: Float -> String -- monthly payments
```

What is the type of `read` and `show`?
Overloaded Read and Show

Haskell has a type class `Read` of “readable” types and a type class `Show` of “showable” types

\[
\begin{align*}
\text{read} & : \text{Read } a \Rightarrow \text{String } \rightarrow a \\
\text{show} & : \text{Show } a \Rightarrow a \quad \rightarrow \text{String}
\end{align*}
\]

Ambiguous Overloading

\[
\begin{align*}
\text{identity} & : \text{String } \rightarrow \text{String} \\
\text{identity} \ x & = \text{show} \ (\text{read} \ x)
\end{align*}
\]

What is the type of `(read x)`?
Implementation

How does `sqr` find the correct function for `*`?

```haskell
sqr :: (Num a) => a -> a
sqr x = x * x
```

An overloaded function is compiled assuming an extra "dictionary" argument.

```haskell
sqr' = \class_inst x -> (class_inst(*)(x)) x x
```

Then `(sqr 23)` will be compiled as

```haskell
sqr' IntClassInstance 23
```

Most dictionaries can be eliminated at compile time by function specialization.

Haskell Type Classes vs. Java Classes

- **Similarities**
  - Group together common sets of operations
  - Class hierarchy: super/sub-classes, inheritance
  - Dictionaries ≈ virtual method tables (vtables)

- **Differences**
  - The instance of a type class is a type, while the instance of a class is an object; types ≠ objects
  - No notion of mutable state in Haskell
  - In Java, objects carry "dictionaries" (vtables); in Haskell, dictionaries are separate from values (connected by the type system)